If it's not what You are looking for type in the equation solver your own equation and let us solve it.
19x^2-120x+72=0
a = 19; b = -120; c = +72;
Δ = b2-4ac
Δ = -1202-4·19·72
Δ = 8928
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8928}=\sqrt{144*62}=\sqrt{144}*\sqrt{62}=12\sqrt{62}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-120)-12\sqrt{62}}{2*19}=\frac{120-12\sqrt{62}}{38} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-120)+12\sqrt{62}}{2*19}=\frac{120+12\sqrt{62}}{38} $
| x4-4x3+8x-5=0 | | √1694/x+14=25 | | 4x–7=5 | | 14=2/39(9y-15) | | 4x^2-3=-5x | | -7y–18–6y=-4y+9 | | 0.6x=1300 | | 8h-10h=3h=3h+25 | | 7x+5=4x+.5+3x | | -3x^2-2x=-65 | | 3x^2-2x=-65 | | x=(4x-11/2) | | 4-6x+2=32 | | 7x-15=2x+21 | | 3.6d+2=7-1.5d | | y=5(3+21/37)+19 | | 6x-9=2(x-1)+11 | | 3y-12=2y/3+2 | | -3x+8(5x+19)=20 | | 7x-15+2x+21=180 | | -3x+3x=-9+5 | | 15=2k-(4-k) | | 170=(2w-4)(w) | | (3-2x)^2-1=-16 | | (4z-3)/4-3=(5z-7)3-4z-7 | | 1/6c=2/3 | | 1/6c=3/3 | | -4c−15=c | | c=-4c−15 | | 11h+-5h=12 | | (6w-2)+2w=30 | | 2x2+4x-30=0 |